High Repetition Rate Passive Q-Switched Er:Glass Laser Using $U^{2+}:\text{CaF}_2$ Saturable Absorber

Ruikun Wu, Yasi Jiang, Michael J. Myers
John D. Myers, Scott J. Hamlin

Kigre, Inc.
100 Marshland Road
Hilton Head Island, SC 29926
Phone # (803)681-5800
Fax # (803)681-4559

Abstract:

1.54 µm laser output with 10 mJ of energy and a 60ns pulse width was demonstrated at 8.5Hz by using $U^{2+}\text{CaF}_2$ as a saturable absorbing Q-switch. The laser media is an experimental Er:Glass designated QX/ER.
High Repetition Rate Passive Q-Switched Er:Glass Laser Using U^{2+}:CaF2 Saturable Absorber

Ruikun Wu, Yasi Jiang, Michael J. Myers
John D. Myers, Scott J. Hamlin

Kigre, Inc.
100 Marshland Road
Hilton Head Island, SC29926
Phone # (803)681-5800
Fax # (803)681-4559

Recently, interest in higher repetition Q-switched Er:Glass lasers has increased. This is primarily due to new Q-switch and base glass technology. Applications include ranging, target designation, laser radar, communications, environmental sensing, collision avoidance, law enforcement, and wind shear detection. Several laboratories have been conducting basic research involving different methods of Q-switching Er:Glass lasers at reasonably high repetition rates. Because passive Q-switches are compact, simple, and reliable, they are utilized as the Q-switch of choice for most Nd:YAG rangefinding transmitters. Scientists have searched for many years for an acceptable passive Q-switch for Er:Glass lasers. Recently, researchers at the University of Southern California have reported Passive Q-switching of Er:Glass using U^{4+} doped fluoride crystals. Kigre has demonstrated passive Q-switching in U^{2+} doped CaF2 and glass. In more recent conversations with the researchers at the University of Southern California, it appears that the active valance was U^{2+} and not U^{4+}. Based upon the saturable absorbing Q-switch and high average power glass technology, a higher repetition rate transmitter was designed and demonstrated.

Fig. 1. Measured absorption spectra near 1.54 micron
The spectral characteristics of U^{2+}, U^{3+}, and U^{4+} were carefully analyzed. The absorption spectra near 1540 nm was measured and is illustrated in figure 1. The absorption cross section at 1535 nm was calculated to be 7×10^{-20} [10]. Bleaching experiments were conducted and the results are shown in Figure 2. The CaF2 samples were doped with 0.5 atom% uranium. The measures absorption curves indicate the uranium in the sample to be divalent.

Due to the large absorption cross section at 1.54 μ of U2:CaF2 in comparison to the stimulated emission cross section of Er^{3+} in phosphate glass, intra-resonator focusing was not necessary. The first Q-switch experiment was conducted using a normal Er:glass laser resonator, in which the HR mirror is 60 cm concave and the output coupler is 300 cm concave. The 0.5 mm diameter of the TEM$_{00}$ mode was nearly constant over the entire cavity length.

Q-switch sample #1 had an initial transmission of 82.9%. Output energies of 2mJ and about 60ns pulse widths were obtained in both TEM$_{10}$ and TEM$_{00}$ modes with 33J of pumping. Decreasing the initial transmission to 64%, in sample #2 yielded a higher output energy of 6.9mJ with higher transverse modes and a pulsewidth of 27ns with an 87J pump. Adjusting the resonator alignment produced very clear mode patterns such as TEM$_{00}$, TEM$_{10}$, TEM$_{20}$, TEM$_{30}$, TEM$_{40}$, TEM$_{50}$, TEM$_{60}$, as well as some cylindrical modes. For certain modes, the output energy was found to be quite stable: for example 1.6mJ in TEM$_{00}$ and 2.5mJ in TEM$_{10}$. The maximum output energy was achieved with a combination of TEM$_{00}$ and cylindrical TEM$_{08}$ modes. This combination of modes has a maximum mode volume and produces output energies up to 6.9mJ. An interesting observation was that the bleaching times for the TEM$_{00}$ mode and the cylindrical TEM$_{08}$ mode are slightly different and a double pulse output was observed. The delay between the two pulses varied from 50ns to 400ns. We are convinced that this kind of double pulse behavior is completely different from the normal meaning of “double pulse” in saturable absorber Q-switch lasers.
Table 1. Summarized Data of Q-switch Experiments

<table>
<thead>
<tr>
<th>CAVITY</th>
<th>SAMPLE SIZE</th>
<th>BEAM@</th>
<th>INPUT ENERGY</th>
<th>REP. RATE</th>
<th>OUTPUT ENERGY</th>
<th>PULSE WIDTH</th>
<th>MODE STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM30</td>
<td></td>
<td>82.9%</td>
<td>0.5</td>
<td>1:1</td>
<td>33J</td>
<td>1Hz</td>
<td>2.0mj</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>64.0%</td>
<td>0.5</td>
<td>1:1</td>
<td>33</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.0%</td>
<td>0.5</td>
<td>1:1</td>
<td>87</td>
<td>1</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>1.04</td>
<td>1.08</td>
<td>53</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.92</td>
<td>1.21</td>
<td>53</td>
<td>1</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.92</td>
<td>1.21</td>
<td>36</td>
<td>1.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.53</td>
<td>1.37</td>
<td>33</td>
<td>3.0</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.72</td>
<td>1.41</td>
<td>40</td>
<td>1.5</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.88</td>
<td>1.47</td>
<td>38</td>
<td>8.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.9%</td>
<td>0.88</td>
<td>1.25</td>
<td>38</td>
<td>8.5</td>
<td>5</td>
</tr>
</tbody>
</table>

@ Beam size was calculated according TEM$_{00}$ mode
. Ratio of beam size (TEM$_{00}$ mode) in rod to absorber

In order to further increase the Q-switched output, a new laser resonator was designed with a variable diameter of mode volume along the axis of the resonator. In this resonator, the influence of the mode size upon the saturable absorber could be easily observed. 8.2mJ of energy with a 55ns pulse width was obtained when the saturable absorber sample #1 was moved to the smallest beam diameter with a pump of 53J at 1 Hz. Table 1 summarizes the results of this experiment illustrating that the control of the beam size in the saturable absorber is very important.

Finally, with Kigre's newly developed QX/ER high average power Er:glass exhibiting a maximum thermal loading three times greater than standard QE-7S or about 37OW for a 3X75mm rod, we were able to operate the laser at 10 Hz with a 35J pump. The thermal lensing produced by pumping the rod at repetition rates was matched in the resonator design to optimize the spot size in the U$^{2+}$ CaF$_2$ passive Q-switch for a single pulse output. Accounting for the thermal lensing in the laser rod, the resonator design produced a high order mode output of 10mJ at 8 Hz utilizing Q-switch sample # 1. This resonator is illustrated in figure 3.
All Q-switch samples that were not anti-reflection coated exhibited poor surface figure and optical quality. We believe that considerable performance improvements are possible; however, this is the first reported operation of a flashlamp pumped, Q-switched, Er:Glass laser operating in excess of 4 Hz.

References: